19 research outputs found

    Central insulin and macronutrient intake in the rat

    Get PDF
    When rats are maintained on a standard laboratory diet, the infusion of low doses of insulin into the cerebroventricular system causes a reduction of food intake and body weight. It was recently reported that, if rats are maintained on a high-fat diet (56% calories as fat), they are insensitive to this action of insulin. To investigate further the effect of dietary composition on responsiveness to central insulin, we carried out two experiments. In experiment 1, rats were maintained on one of four equicaloric diets (providing 7, 22, 39, or 54% of calories as fat) before and during a 6-day third-ventricular infusion (i3vt) of insulin (10 mU/day) or saline. Rats consuming 7 or 22% of calories as fat had a significant reduction of both food intake (-17.2 +/- 2.9 and -14.6 +/- 3.3 g, respectively) and body weight (-50 +/- 5 and -41 +/- 5 g, respectively) from baseline over the insulin-infusion period. Rats consuming 39 or 54% calories as fat did not reliably alter food intake (-4.0 +/- 3.9 and -1.9 +/- 3.7 g, respectively) or body weight (-10 +/- 6 and -6 +/- 4 g, respectively) in response to i3vt of insulin. In experiment 2, rats were offered a choice of three macronutrients (carbohydrates, fats, and proteins) in separate jars in their home cages. After they had adapted to the diets, they were infused i3vt with insulin or saline. Insulin caused a significant reduction of body weight relative to saline-infused controls (body wt: -23.1 +/- 4 g) and a reduction in food intake that was selective for dietary fat. These data suggest that the effects of central insulin administration are highly dependent on the macronutrient content of the diet as well as the ability of rats to select their own diets

    Xylitol gummy bear snacks: a school-based randomized clinical trial

    Get PDF
    Background: Habitual consumption of xylitol reduces mutans streptococci (MS) levels but the effect on Lactobacillus spp. is less clear. Reduction is dependent on daily dose and frequency of consumption. For xylitol to be successfully used in prevention programs to reduce MS and prevent caries, effective xylitol delivery methods must be identified. This study examines the response of MS, specifically S. mutans/sobrinus and Lactobacillus spp., levels to xylitol delivered via gummy bears at optimal exposures. Methods: Children, first to fifth grade (n = 154), from two elementary schools in rural Washington State, USA, were randomized to xylitol 15.6 g/day (X16, n = 53) or 11.7 g/day (X12, n = 49), or maltitol 44.7 g/ day (M45, n = 52). Gummy bear snacks were pre-packaged in unit-doses, labeled with ID numbers, and distributed three times/day during school hours. No snacks were sent home. Plaque was sampled at baseline and six weeks and cultured on modified Mitis Salivarius agar for S. mutans/sobrinus and Rogosa SL agar for Lactobacillus spp. enumeration. Results: There were no differences in S. mutans/sobrinus and Lactobacillus spp. levels in plaque between the groups at baseline. At six weeks, log10 S. mutans/sobrinus levels showed significant reductions for all groups (p = 0.0001): X16 = 1.13 (SD = 1.65); X12 = 0.89 (SD = 1.11); M45 = 0.91 (SD = 1.46). Reductions were not statistically different between groups. Results for Lactobacillus spp. were mixed. Group X16 and M45 showed 0.31 (SD = 2.35), and 0.52 (SD = 2.41) log10 reductions, respectively, while X12 showed a 0.11 (SD = 2.26) log10 increase. These changes were not significant. Post-study discussions with school staff indicated that it is feasible to implement an in-classroom gummy bear snack program. Parents are accepting and children willing to consume gummy bear snacks daily. Conclusion: Reductions in S. mutans/sobrinus levels were observed after six weeks of gummy bear snack consumption containing xylitol at 11.7 or 15.6 g/day or maltitol at 44.7 g/day divided in three exposures. Lactobacillus spp. levels were essentially unchanged in all groups. These results suggest that a xylitol gummy bear snack may be an alternative to xylitol chewing gum for dental caries prevention. Positive results with high dose maltitol limit the validity of xylitol findings. A larger clinical trial is needed to confirm the xylitol results. Trial registration: [ISRCTN63160504].Supported by Grant No. U54DE14254 from the National Institute of Dental and Craniofacial Research, and Grant No. 90YD0188 from the Office of Head Start

    A surrogate method for comparison analysis of salivary concentrations of Xylitol-containing products

    Get PDF
    Background: Xylitol chewing gum has been shown to reduce Streptococcus mutans levels and decay. Two studies examined the presence and time course of salivary xylitol concentrations delivered via xylitol-containing pellet gum and compared them to other xylitol-containing products. Methods: A within-subjects design was used for both studies. Study 1, adults (N = 15) received three xylitol-containing products (pellet gum (2.6 g), gummy bears (2.6 g), and commercially available stick gum (Koolerz, 3.0 g)); Study 2, a second group of adults (N = 15) received three xylitol-containing products (pellet gum, gummy bears, and a 33% xylitol syrup (2.67 g). For both studies subjects consumed one xylitol product per visit with a 7-day washout between each product. A standardized protocol was followed for each product visit. Product order was randomly determined at the initial visit. Saliva samples (0.5 mL to 1.0 mL) were collected at baseline and up to 10 time points (~16 min in length) after product consumption initiated. Concentration of xylitol in saliva samples was analyzed using high-performance liquid chromatography. Area under the curve (AUC) for determining the average xylitol concentration in saliva over the total sampling period was calculated for each product. Results: In both studies all three xylitol products (Study 1: pellet gum, gummy bears, and stick gum; Study 2: pellet gum, gummy bears, and syrup) had similar time curves with two xylitol concentration peaks during the sampling period. Study 1 had its highest mean peaks at the 4 min sampling point while Study 2 had its highest mean peaks between 13 to 16 minutes. Salivary xylitol levels returned to baseline at about 18 minutes for all forms tested. Additionally, for both studies the total AUC for the xylitol products were similar compared to the pellet gum (Study 1: pellet gum - 51.3 [micro]g.min/mL, gummy bears - 59.6 [micro]g.min/mL, and stick gum - 46.4 [micro]g.min/mL; Study 2: pellet gum - 63.0 [micro]g.min/mL, gummy bears - 55.9 [micro]g.min/mL, and syrup - 59.0 [micro]g.min/mL). Conclusion: The comparison method demonstrated high reliability and validity. In both studies other xylitol-containing products had time curves and mean xylitol concentration peaks similar to xylitol pellet gum suggesting this test may be a surrogate for longer studies comparing various products.NIDCR-NIH U54 DE14254; Head Start, HRSA 90YD0188/03; and MCHB, HRSA R40MC03622-03

    Readability of pediatric health materials for preventive dental care

    Get PDF
    BACKGROUND: This study examined the content and general readability of pediatric oral health education materials for parents of young children. METHODS: Twenty-seven pediatric oral health pamphlets or brochures from commercial, government, industry, and private nonprofit sources were analyzed for general readability ("usability") according to several parameters: readability, (Flesch-Kincaid grade level, Flesch Reading Ease, and SMOG grade level); thoroughness, (inclusion of topics important to young childrens' oral health); textual framework (frequency of complex phrases, use of pictures, diagrams, and bulleted text within materials); and terminology (frequency of difficult words and dental jargon). RESULTS: Readability of the written texts ranged from 2(nd )to 9(th )grade. The average Flesch-Kincaid grade level for government publications was equivalent to a grade 4 reading level (4.73, range, 2.4 – 6.6); F-K grade levels for commercial publications averaged 8.1 (range, 6.9 – 8.9); and industry published materials read at an average Flesch-Kincaid grade level of 7.4 (range, 4.7 – 9.3). SMOG readability analysis, based on a count of polysyllabic words, consistently rated materials 2 to 3 grade levels higher than did the Flesch-Kincaid analysis. Government sources were significantly lower compared to commercial and industry sources for Flesch-Kincaid grade level and SMOG readability analysis. Content analysis found materials from commercial and industry sources more complex than government-sponsored publications, whereas commercial sources were more thorough in coverage of pediatric oral health topics. Different materials frequently contained conflicting information. CONCLUSION: Pediatric oral health care materials are readily available, yet their quality and readability vary widely. In general, government publications are more readable than their commercial and industry counterparts. The criteria for usability and results of the analyses presented in this article can be used by consumers of dental educational materials to ensure that their choices are well-suited to their specific patient population

    Central insulin and macronutrient intake in the rat

    No full text
    When rats are maintained on a standard laboratory diet, the infusion of low doses of insulin into the cerebroventricular system causes a reduction of food intake and body weight. It was recently reported that, if rats are maintained on a high-fat diet (56% calories as fat), they are insensitive to this action of insulin. To investigate further the effect of dietary composition on responsiveness to central insulin, we carried out two experiments. In experiment 1, rats were maintained on one of four equicaloric diets (providing 7, 22, 39, or 54% of calories as fat) before and during a 6-day third-ventricular infusion (i3vt) of insulin (10 mU/day) or saline. Rats consuming 7 or 22% of calories as fat had a significant reduction of both food intake (-17.2 ± 2.9 and -14.6 ± 3.3 g, respectively) and body weight (-50 ± 5 and -41 ± 5 g, respectively) from baseline over the insulin-infusion period. Rats consuming 39 or 54% calories as fat did not reliably alter food intake (-4.0 ± 3.9 and -1.9 ± 3.7 g, respectively) or body weight (-10 ± 6 and -6 ± 4 g, respectively) in response to i3vt of insulin. In experiment 2, rats were offered a choice of three macronutrients (carbohydrates, fats, and proteins) in separate jars in their home cages. After they had adapted to the diets, they were infused i3vt with insulin or saline. Insulin caused a significant reduction of body weight relative to saline-infused controls (body wt: -23.1 ± 4 g) and a reduction in food intake that was selective for dietary fat. These data suggest that the effects of central insulin administration are highly dependent on the macronutrient content of the diet as well as the ability of rats to select their own diets.
    corecore